Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 931: 172913, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697521

RESUMO

This study examines the influence of meteorological factors and air pollutants on the performance of automatic pollen monitoring devices, as part of the EUMETNET Autopollen COST ADOPT-intercomparison campaign held in Munich, Germany, during the 2021 pollen season. The campaign offered a unique opportunity to compare all automatic monitors available at the time, a Plair Rapid-E, a Hund-Wetzlar BAA500, an OPC Alphasense, a KH-3000 Yamatronics, three Swisens Polenos, a PollenSense APS, a FLIR IBAC2, a DMT WIBS-5, an Aerotape Sextant, to the average of four manual Hirst traps, under the same environmental conditions. The investigation aimed to elucidate how meteorological factors and air pollution impact particle capture and identification efficiency. The analysis showed coherent results for most devices regarding the correlation between environmental conditions and pollen concentrations. This reflects on one hand, a significant correlation between weather and airborne pollen concentration, and on the other hand the capability of devices to provide meaningful data under the conditions under which measurements were taken. However, correlation strength varied among devices, reflecting differences in design, algorithms, or sensors used. Additionally, it was observed that different algorithms applied to the same dataset resulted in different concentration outputs, highlighting the role of algorithm design in these systems (monitor + algorithm). Notably, no significant influence from air pollutants on the pollen concentrations was observed, suggesting that any potential difference in effect on the systems might require higher air pollution concentrations or more complex interactions. However, results from some monitors were affected to a minor degree by specific weather variables. Our findings suggest that the application of real-time devices in urban environments should focus on the associated algorithm that classifies pollen taxa. The impact of air pollution, although not to be excluded, is of secondary concern as long as the pollution levels are similar to a large European city like Munich.

2.
J Environ Health Sci Eng ; 19(1): 307-318, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34150237

RESUMO

PURPOSE: Indoor and outdoor factors affect personal exposure to air pollutants. Type of cooking appliance (i.e. gas, electricity), and residential location related to traffic are such factors. This research aims to investigate the effect of cooking with gas and electric appliances, as an indoor source of aerosols, and residential traffic as outdoor sources, on personal exposures to particulate matter with an aerodynamic diameter lower than 2.5 µm (PM2.5), black carbon (BC), and ultrafine particles (UFP). METHODS: Forty subjects were sampled for four consecutive days measuring personal exposures to three aerosol pollutants, namely PM2.5, BC, and UFP, which were measured using personal sensors. Subjects were equally distributed into four categories according to the use of gas or electric stoves for cooking, and to residential traffic (i.e. houses located near or away from busy roads). RESULTS/CONCLUSION: Cooking was identified as an indoor activity affecting exposure to aerosols, with mean concentrations during cooking ranging 24.7-50.0 µg/m3 (PM2.5), 1.8-4.9 µg/m3 (BC), and 1.4 × 104-4.1 × 104 particles/cm3 (UFP). This study also suggest that traffic is a dominant source of exposure to BC, since people living near busy roads are exposed to higher BC concentrations than those living further away from traffic. In contrast, the contribution of indoor sources to personal exposure to PM2.5 and UFP seems to be greater than from outdoor traffic sources. This is probably related to a combination of the type of building construction and a varying range of activities conducted indoors. It is recommended to ensure a good ventilation during cooking to minimize exposure to cooking aerosols. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40201-020-00604-7.

3.
Phys Chem Chem Phys ; 22(26): 14704-14711, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32573569

RESUMO

Green fluorescent protein (GFP) is a widely used fluorescent probe in the life sciences and biosciences due to its high quantum yield and extinction coefficient, and its ability to bind to biological systems of interest. This study measures the fluorescence lifetime of GFP in sucrose/water solutions of known molarity in order to determine the refractive index dependent lifetime of GFP. A range of refractive indices from 1.43-1.53 were probed by levitating micron sized droplets composed of water/sucrose/GFP in an optical trap under well-constrained conditions of relative humidity. This setup allows for the first reported measurements of the fluorescence lifetime of GFP at refractive indices greater than 1.46. The results obtained at refractive indices less than 1.46 show good agreement with previous studies. Further experiments that trapped droplets of deionised water containing GFP allowed the hygroscopic properties of GFP to be measured. GFP is found to be mildly hygroscopic by mass, but the high ratio of molecular masses of GFP to water (ca. 1500 : 1) signifies that water uptake is large on a per-mole basis. Hygroscopic properties are verified using brightfield microscope imaging, of GFP droplets at low and high relative humidity, by measuring the humidity dependent droplet size. In addition, this experiment allowed the refractive index of pure GFP to be estimated for the first time (1.72 ± 0.07). This work provides reference data for future experiments involving GFP, especially for those conducted in high refractive index media. The work also demonstrates that GFP can be used as a probe for aerosol studies, which require determination of the refractive index of the aerosol of any shape.


Assuntos
Proteínas de Fluorescência Verde/química , Fluorescência , Pinças Ópticas , Refratometria , Sacarose/química , Água/química , Molhabilidade
4.
Sci Rep ; 9(1): 8237, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160655

RESUMO

This paper assesses the effect of short-term exposure to particulate matter (PM) air pollution on human cognitive performance via a double cross over experimental design. Two distinct experiments were performed, both of which exposed subjects to low and high concentrations of PM. Firstly, subjects completed a series of cognitive tests after being exposed to low ambient indoor PM concentrations and elevated PM concentrations generated via candle burning, which is a well-known source of PM. Secondly, a different cohort underwent cognitive tests after being exposed to low ambient indoor PM concentrations and elevated ambient outdoor PM concentrations via commuting on or next to roads. Three tests were used to assess cognitive performance: Mini-Mental State Examination (MMSE), the Stroop Color and Word test, and Ruff 2 & 7 test. The results from the MMSE test showed a statistically robust decline in cognitive function after exposure to both the candle burning and outdoor commuting compared to ambient indoor conditions. The similarity in the results between the two experiments suggests that PM exposure is the cause of the short-term cognitive decline observed in both. The outdoor commuting experiment also showed a statistically significant short-term cognitive decline in automatic detection speed from the Ruff 2 and 7 selective attention test. The other cognitive tests, for both the candle and commuting experiments, showed no statistically significant difference between the high and low PM exposure conditions. The findings from this study are potentially far reaching; they suggest that elevated PM pollution levels significantly affect short term cognition. This implies average human cognitive ability will vary from city to city and country to country as a function of PM air pollution exposure.


Assuntos
Poluição do Ar/análise , Cognição/fisiologia , Material Particulado/efeitos adversos , Adulto , Feminino , Humanos , Masculino , Testes de Estado Mental e Demência , Pessoa de Meia-Idade , Tamanho da Partícula , Teste de Stroop , Fatores de Tempo , Adulto Jovem
5.
Int J Pharm ; 520(1-2): 59-69, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28159683

RESUMO

Particle inhalation is an effective and rapid delivery method for a variety of pharmaceuticals, particularly bronchodilation drugs used for treating asthma and COPD. Conditions of relative humidity and temperature inside the lungs are generally very different from the outside ambient air, with the lung typically being warmer and more humid. Changes in humidity, from inhaler to lung, can cause hygroscopic phase transitions and particle growth. Increasing particle size and mass can negatively affect particle deposition within the lung leading to inefficient treatment, while deliquescence prior to impaction is liable to accelerate drug uptake. To better understand the hygroscopic properties of four pharmaceutical aerosol particles; pharmaceutical particles from four commercially available pressurised metered dose inhalers (pMDIs) were stably captured in an optical trap, and their composition was examined online via Raman spectroscopy. Micron-sized particles of salbutamol sulfate, salmeterol xinafoate, fluticasone propionate and ciclesonide were levitated and examined over a range of relative humidity values inside a chamber designed to mimic conditions within the respiratory tract. The effect of temperature upon hygroscopicity was also investigated for salbutamol sulfate particles. Salbutamol sulfate was found to have significant hygroscopicity, salmeterol xinafoate showed some hygroscopic interactions, whilst fluticasone propionate and ciclesonide revealed no observable hygroscopicity. Thermodynamic and structural modelling is used to explain the observed experimental results.


Assuntos
Aerossóis/química , Análise Espectral Raman , Molhabilidade , Albuterol/química , Fluticasona/química , Umidade , Inaladores Dosimetrados , Modelos Estruturais , Tamanho da Partícula , Pregnenodionas/química , Xinafoato de Salmeterol/química , Temperatura
6.
Phys Chem Chem Phys ; 18(31): 21710-9, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27430158

RESUMO

We describe a technique to measure the viscosity of stably levitated single micron-sized aerosol particles. Particle levitation allows the aerosol phase to be probed in the absence of potentially artefact-causing surfaces. To achieve this feat, we combined two laser based techniques: optical trapping for aerosol particle levitation, using a counter-propagating laser beam configuration, and fluorescent lifetime imaging microscopy (FLIM) of molecular rotors for the measurement of viscosity within the particle. Unlike other techniques used to measure aerosol particle viscosity, this allows for the non-destructive probing of viscosity of aerosol particles without interference from surfaces. The well-described viscosity of sucrose aerosol, under a range of relative humidity conditions, is used to validate the technique. Furthermore we investigate a pharmaceutically-relevant mixture of sodium chloride and salbutamol sulphate under humidities representative of in vivo drug inhalation. Finally, we provide a methodology for incorporating molecular rotors into already levitated particles, thereby making the FLIM/optical trapping technique applicable to real world aerosol systems, such as atmospheric aerosols and those generated by pharmaceutical inhalers.

7.
Chem Sci ; 7(2): 1357-1367, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29910892

RESUMO

Organic aerosol particles (OA) play major roles in atmospheric chemistry, climate, and public health. Aerosol particle viscosity is highly important since it can determine the ability of chemical species such as oxidants, organics or water to diffuse into the particle bulk. Recent measurements indicate that OA may be present in highly viscous states, however, diffusion rates of small molecules such as water are not limited by these high viscosities. Direct observational evidence of kinetic barriers caused by high viscosity and low diffusivity in aerosol particles were not available until recently; and techniques that are able to dynamically quantify and track viscosity changes during atmospherically relevant processes are still unavailable for atmospheric aerosols. Here we report quantitative, real-time, online observations of microscopic viscosity changes in aerosol particles of atmospherically relevant composition, using fluorescence lifetime imaging (FLIM) of viscosity. We show that microviscosity in ozonated oleic acid droplets and secondary organic aerosol (SOA) particles formed by ozonolysis of myrcene increases substantially with decreasing humidity and atmospheric oxidative aging processes. Furthermore, we found unexpected heterogeneities of microviscosity inside individual aerosol particles. The results of this study enhance our understanding of organic aerosol processes on microscopic scales and may have important implications for the modeling of atmospheric aerosol growth, composition and interactions with trace gases and clouds.

8.
Phys Chem Chem Phys ; 17(48): 32194-203, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26578034

RESUMO

Aerosol particles can serve as cloud condensation nuclei (CCN) to form cloud droplets, and its composition is a main factor governing whether an aerosol particle is an effective CCN. Pure mineral dust particles are poor CCN; however, changes in chemical composition of mineral dust aerosol particles, due to heterogeneous reactions with reactive trace gases in the troposphere, can modify their CCN properties. In this study we investigated the CCN activities of CaCO3 (as a surrogate for mineral dust) and its six atmospheric ageing products: Ca(NO3)2, CaCl2, CaSO4, Ca(CH3SO3)2, Ca(HCOO)2, and Ca(CH3COO)2. CaCO3 has a very low CCN activity with a hygroscopicity parameter (κ) of 0.001-0.003. The CCN activities of its potential atmospheric ageing products are significantly higher. For example, we determined that Ca(NO3)2, CaCl2 and Ca(HCOO)2 have κ values of ∼0.50, similar to that of (NH4)2SO4. Ca(CH3COO)2 has slightly lower CCN activity with a κ value of ∼0.40, and the κ value of CaSO4 is around 0.02. We further show that exposure of CaCO3 particles to N2O5 at 0% relative humidity (RH) significantly enhances their CCN activity, with κ values increasing to around 0.02-0.04. Within the experimental uncertainties, it appears that the variation in exposure to N2O5 from ∼550 to 15,000 ppbv s does not change the CCN activities of aged CaCO3 particles. This observation indicates that the CaCO3 surface may be already saturated at the shortest exposure. We also discussed the atmospheric implications of our study, and suggested that the rate of change in CCN activities of mineral dust particles in the troposphere is important to determine their roles in cloud formation.

9.
Chem Commun (Camb) ; 50(98): 15499-502, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25329335

RESUMO

Individual micron-sized solid particles from a Salamol® pharmaceutical inhaler are stably captured in air using an optical trap for the first time. Raman spectroscopy of the levitated particles allows online interrogation of composition and deliquescent phase change within a high humidity environment that mimics the particle's travel from inhaler to lung.


Assuntos
Aerossóis/administração & dosagem , Albuterol/administração & dosagem , Broncodilatadores/administração & dosagem , Nebulizadores e Vaporizadores , Administração por Inalação , Aerossóis/química , Albuterol/química , Broncodilatadores/química , Tamanho da Partícula , Análise Espectral Raman
10.
J Phys Chem A ; 118(38): 8817-27, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25188692

RESUMO

Silica (SiO2) is an important mineral present in atmospheric mineral dust particles, and the heterogeneous reaction of N2O5 on atmospheric aerosol is one of the major pathways to remove nitrogen oxides from the atmosphere. The heterogeneous reaction of N2O5 with SiO2 has only been investigated by two studies previously, and the reported uptake coefficients differ by a factor of >10. In this work two complementary laboratory techniques were used to study the heterogeneous reaction of SiO2 particles with N2O5 at room temperature and at different relative humidities (RHs). The uptake coefficients of N2O5, γ(N2O5), were determined to be (7.2 ± 0.6) × 10(-3) (1σ) at 7% RH and (5.3 ± 0.8) × 10(-3) (1σ) at 40% RH for SiO2 particles, using the aerosol flow tube technique. We show that γ(N2O5) determined in this work can be reconciled with the two previous studies by accounting for the difference in geometric and BET derived aerosol surface areas. To probe the particle phase chemistry, individual micrometer sized SiO2 particles were optically levitated and exposed to a continuous flow of N2O5 at different RHs, and the composition of levitated particles was monitored online using Raman spectroscopy. This study represents the first investigation into the heterogeneous reactions of levitated individual SiO2 particles as a surrogate for mineral dust. Relative humidity was found to play a critical role: while no significant change of particle composition was observed by Raman spectroscopy during exposure to N2O5 at RH of <2%, increasing the RH led to the formation of nitrate species on the particle surface which could be completely removed after decreasing the RH back to <2%. This can be explained by the partitioning of HNO3 between the gas and adsorbed phases. The atmospheric implications of this work are discussed.

11.
Phys Chem Chem Phys ; 16(23): 11426-34, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24803083

RESUMO

The heterogeneous interactions of gas molecules on solid particles are crucial in many areas of science, engineering and technology. Such interactions play a critical role in atmospheric chemistry and in heterogeneous catalysis, a key technology in the energy and chemical industries. Investigating heterogeneous interactions upon single levitated particles can provide significant insight into these important processes. Various methodologies exist for levitating micron sized particles including: optical, electrical and acoustic techniques. Prior to this study, the optical levitation of solid micron scale particles has proved difficult to achieve over timescales relevant to the above applications. In this work, a new vertically configured counter propagating dual beam optical trap was optimized to levitate a range of solid particles in air. Silica (SiO2), α-alumina (Al2O3), titania (TiO2) and polystyrene were stably trapped with a high trapping efficiency (Q = 0.42). The longest stable trapping experiment was conducted continuously for 24 hours, and there are no obvious constraints on trapping time beyond this period. Therefore, the methodology described in this paper should be of major benefit to various research communities. The strength of the new technique is demonstrated by the simultaneous levitation and spectroscopic interrogation of silica particles by Raman spectroscopy. In particular, the adsorption of water upon silica was investigated under controlled relative humidity environments. Furthermore, the collision and coagulation behaviour of silica particles with microdroplets of sulphuric acid was followed using both optical imaging and Raman spectroscopy.

12.
Phys Chem Chem Phys ; 13(33): 15318-25, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21792401

RESUMO

A dual wavelength range spectrometer system has been designed and constructed which can simultaneously perform single pass UV absorption spectroscopy and cavity enhanced absorption spectroscopy in the green region of the visible spectrum. Using the system the absorption spectrum of molecular chlorine has been measured, in the wavelength range 509-570 nm, using cavity enhanced absorption spectroscopy. Absolute absorption cross sections were obtained by simultaneous measurement of the UV spectrum to obtain the Cl(2) concentration. These are the first temperature dependent measurements of the Cl(2) absorption cross sections in this region which are vibronically resolved. Laboratory measurements were conducted at four temperatures (298, 273, 233, and 197 K). Spectral modelling of the Cl(2) B(3)Π(0(u)(+))-X(1)Σ(g)(+) electronic transition has been performed, the results of which are in good agreement with our measured spectra.

13.
Environ Sci Technol ; 44(17): 6656-60, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20701273

RESUMO

The hygroscopicity and mass loss of aerosols initially composed of maleic acid have been investigated before and after reaction with ozone. The phase of the aerosol, solid or aqueous, during the reaction with ozone strongly affects the composition of the processed aerosol. Furthermore the loss of aerosol mass, via the production of volatile ozonolysis products, does not occur until the processed aerosol has existed as an aqueous phase aerosol. The loss rate of the aerosol mass appears to follow unimolecular first order kinetics which is consistent with the rate determining step being the cleavage of a weak hydroperoxide, or peroxide, bond (approximately 104 kJ mol(-1)). This speculative rate determining step, which is not based on chemical analysis, is possibly a universal feature in the ozonolysis of organic aerosol containing the alkene functionality.


Assuntos
Aerossóis/química , Maleatos/química , Ozônio/química , Molhabilidade , Umidade , Cinética , Modelos Químicos , Peso Molecular , Fatores de Tempo , Volatilização
14.
J Phys Chem A ; 110(21): 6874-85, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16722703

RESUMO

A laser flash photolysis-resonance fluorescence technique has been employed to study the kinetics of the reaction of chlorine atoms with dimethyl sulfoxide (CH3S(O)CH3; DMSO) as a function of temperature (270-571 K) and pressure (5-500 Torr) in nitrogen bath gas. At T = 296 K and P > or = 5 Torr, measured rate coefficients increase with increasing pressure. Combining our data with literature values for low-pressure rate coefficients (0.5-3 Torr He) leads to a rate coefficient for the pressure independent H-transfer channel of k1a = 1.45 x 10(-11) cm3 molecule(-1) s(-1) and the following falloff parameters for the pressure-dependent addition channel in N2 bath gas: k(1b,0) = 2.53 x 10(-28) cm6 molecule(-2) s(-1); k(1b,infinity) = 1.17 x 10(-10) cm3 molecule(-1) s(-1), F(c) = 0.503. At the 95% confidence level, both k1a and k1b(P) have estimated accuracies of +/-30%. At T > 430 K, where adduct decomposition is fast enough that only the H-transfer pathway is important, measured rate coefficients are independent of pressure (30-100 Torr N2) and increase with increasing temperature. The following Arrhenius expression adequately describes the temperature dependence of the rate coefficients measured at over the range 438-571 K: k1a = (4.6 +/- 0.4) x 10(-11) exp[-(472 +/- 40)/T) cm3 molecule(-1) s(-1) (uncertainties are 2sigma, precision only). When our data at T > 430 K are combined with values for k1a at temperatures of 273-335 K that are obtained by correcting reported low-pressure rate coefficients from discharge flow studies to remove the contribution from the pressure-dependent channel, the following modified Arrhenius expression best describes the derived temperature dependence: k1a = 1.34 x 10(-15)T(1.40) exp(+383/T) cm3 molecule(-1) s(-1) (273 K < or = T < or = 571 K). At temperatures around 330 K, reversible addition is observed, thus allowing equilibrium constants for Cl-DMSO formation and dissociation to be determined. A third-law analysis of the equilibrium data using structural information obtained from electronic structure calculations leads to the following thermochemical parameters for the association reaction: delta(r)H(o)298 = -72.8 +/- 2.9 kJ mol(-1), deltaH(o)0 = -71.5 +/- 3.3 kJ mol(-1), and delta(r)S(o)298 = -110.6 +/- 4.0 J K(-1) mol(-1). In conjunction with standard enthalpies of formation of Cl and DMSO taken from the literature, the above values for delta(r)H(o) lead to the following values for the standard enthalpy of formation of Cl-DMSO: delta(f)H(o)298 = -102.7 +/- 4.9 kJ mol(-1) and delta(r)H(o)0 = -84.4 +/- 5.8 kJ mol(-1). Uncertainties in the above thermochemical parameters represent estimated accuracy at the 95% confidence level. In agreement with one published theoretical study, electronic structure calculations using density functional theory and G3B3 theory reproduce the experimental adduct bond strength quite well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...